
Binsweep: Reliably Restricting Untrusted Instruction Streamswith
Static Binary Analysis and Control-Flow Integrity

Matteo Oldani
William Blair
Lukas Stadler
Zbynĕk S̆lachrt

Matthias Neugschwandtner
Oracle America Inc.

Austin, Texas, United States

Abstract

Restricting an application’s instruction stream is necessary to ensure
the absence of certain functionality, which in turn is a requirement
for lightweight sandboxing of untrusted code in cloud environments.
Doing so at the lowest possible level, (i.e., machine code), is safest
as it does not assume trusted or bug-free build toolchains. However,
resolving indirect branches and instruction set architectures (ISA)
with variable-length instructions are a challenge for reliable and
exhaustive machine code analysis.

In this paper, we present Binsweep, a system that ensures com-
plete analysis of variable-length ISA applications in machine code.
The key enabling concept is a restricted form of Control Flow In-
tegrity (CFI) thatBinsweep enforces, calledBinsweepCFI.We imple-
ment BinsweepCFI as a compiler pass within the LLVM toolchain.
Our evaluation over SPECint benchmarks in SPEC CPU 2017, and
widely used binary programs, including the NGINXwebserver, Mi-
cronaut service, and Python interpreters, demonstrates that Bin-
sweep can verify real world programs, andBinsweepCFI can protect
programs with manageable (6.55% in the worst case) performance
overhead. Furthermore, we show Binsweep can verify these pro-
grams’ CFGs much faster than a state of the art binary analysis tool,
angr, can recover CFGs. These results demonstrate Binsweep can
efficiently support admitting untrusted code buffers, hundreds of
megabytes in size, to cloud sandboxes.

CCS Concepts

• Security andprivacy→Virtualization and security; Informa-

tion flow control; Software security engineering; • Software

and its engineering→Compilers.

Keywords

Intra-Process Isolation, Control-Flow Integrity, Static Binary Anal-
ysis, Cloud Security

This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs International 4.0 License.

CCSW ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1234-0/24/10
https://doi.org/10.1145/3689938.3694778

ACMReference Format:

Matteo Oldani, William Blair, Lukas Stadler, Zbynĕk S̆lachrt, and Matthias
Neugschwandtner. 2024. Binsweep: Reliably Restricting Untrusted Instruc-
tion Streams with Static Binary Analysis and Control-Flow Integrity. In
Proceedings of the 2024 Cloud Computing SecurityWorkshop (CCSW ’24), Octo-
ber 14–18, 2024, Salt Lake City, UT, USA.ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3689938.3694778

1 Introduction

A significant amount of past research deals with static analysis of
applications in form of binary executables for malware analysis and
reverse engineering [6, 9, 18]. However, static analysis is also used
as a gatekeeper for runtime environments:

Both cloud computing environments as well as mobile platforms
have an interest to tightly control the application code they are run-
ning to avoid malicious applications from compromising the system.
To this end, applications published on the corresponding official
application distribution platforms undergo an automated review
process that inspects applications for malicious behavior. Restric-
tions on higher-level constructs such as source code or intermediate
representations such as JVM bytecode or LLVM IR is insufficient,
however, as the final lowering step to machine code can still intro-
duce unintended code patterns or unknown bugs [7]. This leaves
validation at the machine code level as the final option. However, in
the presence of malicious input this is a non-trivial task.

So-called Jekyll apps [31, 34] have shown to be able to circumvent
the review process by hiding malicious functionality in a seemingly
benign instruction stream by exploiting themain challenges in static
analysis of ISAs with variable-length instructions: First, an instruc-
tion stream decodes to different instructions depending on the offset
where decoding is started. If the instruction streamhas a two-byte in-
struction at offset zero and decoding starts at offset one, amisaligned,
alternate instruction stream is decoded. Second, indirect branches
can have targets that are derived based on the runtime state and
may depend on input data. Combined, these two challenges allow
hiding misaligned instructions in a seemingly benign instruction
stream that are only reachable through an indirect branch executed
at runtime, similar to return-oriented-programming (ROP) gadgets.

This attack vector is particularly relevant in light of the emerg-
ing interest in lightweight user-mode native code sandboxing tech-
niques for the cloud, enabled through Intel Memory Protection Keys
(MPK) [26, 27] and their ARM counterpart Permission Overlay Ex-
tensions (POE) [20]. Systems such as Erim [33], Hodor [15], Faast-
lane [17], and Jenny [28] leverage these hardware mechanisms to

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1145/3689938.3694778
https://doi.org/10.1145/3689938.3694778

CCSW ’24, October 14–18, 2024, Salt Lake City, UT, USA Matteo Oldani, William Blair, Lukas Stadler, Zbynĕk S̆lachrt, andMatthias Neugschwandtner

isolate workloads. A common aspect of using these hardware mech-
anisms for workload isolation is that the instruction to change mem-
ory access permissions cannot be issued by the workload itself, (i.e.,
it is considered privileged and cannot be part of the workloads in-
struction stream). Research has demonstrated that ensuring this is
a challenge in itself [12].

A naive solution to this issue would be decoding the instruction
stream at byte-by-byte offsets. However, this would likely lead to
numerous false positives as many instructions, which are actually
unreachable, are mistakenly disassembled and filtered. This naive
approach cannot scale to analyze real-world applications in general.

Control-flow integrity (CFI) [4] limits the number of legitimate
targets for indirect branches. This naturally reduces the number of
executable paths a successful exploit can take in a victim program.
CFI has gained enoughmomentumover the years thatCPUmanufac-
turers even introduced silicon support in the form of ISA extensions.
This has taken the form of Control-Flow Enforcement Technology
(CET) on Intel andAMDCPUs [16, 29] aswell as branch target identi-
fication (BTI) and guarded control stack (GCS) on ARM [22, 35]. CFI
has mostly been positioned as a means for exploit mitigation, with
its effectiveness largely depending on the accuracy of the underly-
ing control-flow information [10]. In the case of binary executables,
recovering information on legitimate control flows from the instruc-
tion stream represents a challenging static analysis problem.

With Binsweepwe turn the tables: by making CFI a precondition
for static analysis, we can reliably traverse all possible execution
paths. Compared to the use of CFI in preventing exploits, we only re-
quire a relaxed form that indicates the targets of all indirect branches
in general. At the same time, Binsweep also enforces CFI to ensure
that our analysis is indeed complete.

In this paper, we make the following contributions:
• Binsweep, a novel approach to static binary analysis that
ensures completenesswhenused incombinationwithcontrol-
flow integrity.

• A software implementation of CFI in LLVM for the x86_64
architecture that satisfies the CFI requirements for Binsweep.

• A performance evaluation of Binsweep and our CFI imple-
mentation on real world executables, including NGINX, a Mi-
cronaut service, and Python interpreters. We include a com-
parison with angr, a state of the art binary analysis frame-
work [30], and demonstrate that Binsweep recovers CFGs
substantially faster thanangr, andoftencanverifyexecutables
hundreds of megabytes in size in less than 20 seconds.

2 Background and Threat Model

In this section,weprovidebackgroundonbinaryanalysisandcontrol-
flow integrity, two of the key techniques used by Binsweep. Further-
more, we present the threat model we assume in this work.

2.1 Control-Flow Integrity

Control-flow integrity (CFI) was first proposed as a technique to en-
sure all execution paths for a running program conform to the paths
given in the program’s original representation. That is, if an adver-
sary were to subvert a program’s control-flow, either by exploiting
a corrupted stored instruction pointer on the stack or overwriting
function pointers stored in objects to hijack forward-edges, the CFI

mechanism could detect the subversion and terminate the program
before an adversary could gain control of the running program.

This has spawned numerous prototypes in software that have
historically suffered high performance penalties. However, hard-
waremanufacturers such as Intel andARMhave recently introduced
CFI features into their CPUs to implement both backward-edge (i.e.,
returns) and forward-edge (i.e., indirect jumps) CFI. Unfortunately,
even thoughCFI featuresmay be present on hardware, adopting new
hardware models at scale comes at a significant cost. Furthermore,
the entire toolchain, including compilers and operating systems,
must add support for new features in order for programs to bene-
fit for them. Our software based approach, described in Section 3
strikes a balance between a fully software CFI solution and the new
hardwareCFI features thatmay not be readily available or supported
yet by commodity operating systems.

Forexample, the latest versionofLinux, asof thiswriting, still does
not support indirect branch tracking (IBT) available on Intel CPUs.
This isnot a fault of Linux, but rather anexampleofhowmuchconsid-
erationandeffortmust go intoproperly configuring security features
inhardwarebefore theycanbe readilyused in commodity computing
environments. In thiswork,we adopt a similar approach to IBT to im-
plement a software CFI solution. Like IBT, we mark all valid indirect
branch targets with a special ENDBR64 instruction, which executes
as a wide NOP on unsupported CPUs. We then introduce a toolchain
that emits a softwareCFI check for the branch target at every indirect
branch. This emitted software check halts the process if the destina-
tion of the indirect branch does not contain a ENDBR64 instruction.

2.2 Binary Analysis

Binary analysis tools seek to determine properties of programs rep-
resented as the binary executable programs produced by compilers
and linkers, interpreted by dynamic loaders and operating systems,
and executed directly on CPUs. The low level of abstraction used by
binary programs complicates even the simplest program analysis
tasks. For example, simply recovering the control-flow graph (CFG)
of executables that run on commodity CPUs (i.e., x86), is intractable
in general, due to the inability to define a bijection betweenCFGs and
machine code sequences. A CFG is a graph data-structure where in-
dividual nodes represent basic blocks, or instruction sequences that
either endwith, or are referred to by a jump instruction. The edges in
theCFGdenote control flow transfers between basic blocks, such as a
direct jump, indirect jump,or return instruction.Typically, the taskof
recoveringCFGs fromexecutable binaries involves recognizing func-
tion definitions within the binary, recovering CFGs at each routine
and the executable’s entrypoint, and then analyzing the lifted CFGs.

Despite the undecidable nature of the domain, practical binary
analysis tools are able to reconstruct accurate CFGs from binary
programs to be consumed manually by a human analyst or auto-
matically by analysis passes implemented in software. In this work,
we adopt static binary analysis for the latter use case to detect, and
reject,malicious instruction sequences thatmay be concealedwithin
the arbitrary machine code held by an executable’s code section (see
Section 3). To circumvent the intractability of this problem in gen-
eral, we enforce our proposed software CFI security check on every
executable snippet while enumerating the CFGs stored within an
executable (see Section 3). In our approach, the task of recognizing

Binsweep: Reliably Restricting Untrusted Instruction Streams with Static Binary Analysis and Control-Flow Integrity CCSW ’24, October 14–18, 2024, Salt Lake City, UT, USA

a valid entrypoint is simplified by our software CFI approach (see
Section 3.2). This allows us to reject non-conforming executables,
and, furthermore, allows operators to design flexible security poli-
cies that enable admitting untrusted programs to a variety of use
cases (e.g., an intra-process isolation sandbox). The policy for an
intra-process isolation sandbox could deny access to all system re-
sources by rejecting all syscalls within an untrusted code buffer to
be run inside the sandbox.

2.3 Threat Model

In this work, we assume the following threat model:
• An adversary can pass arbitrary machine code to Binsweep.
This machine code is entirely untrusted, no assumptions are
made about its content, i.e., it also does not matter if the ma-
chine code conforms to our softwareCFI approach. By default,
Binsweep rejects code that does not conform to our software
CFI approach.

• All code that is reachable through indirect branches is avail-
able toBinsweepat analysis time.This requirement is trivially
fulfilled if the code does not contain any indirect branches.
Otherwise, orthogonal securitymechanisms can be employed
to limit reachability. In case such mechanisms are software-
based, they can in turn be expressed as a policy checked by
Binsweep.

• Binsweep rejects code that does not comply with the spec-
ified security policies. This includes CFI enforcement as well
as any operator-specified policy.

• The adversary’s goal is to bypass the security policies en-
forced by Binsweep. A fundamental goal is to circumvent the
CFI enforcement. Other goals may be deployment-specific,
for example, an adversary may want to change memory pro-
tection settings or invoke a malicious system call when the
code is run within a restricted sandbox.

The definition of the environment where untrusted code is run is
up to the operators that rely on Binsweep. That is, any use case that
requires running code of varying trust can benefit from Binsweep.
The constraints for a given level of trust can be expressed as a policy,
up to the limits of the policy language, and enforced by Binsweep.
Following a scan of all the basic blocks in a code buffer’s CFGs, Bin-
sweep “admits” a code buffer if no policy violations are observed.
Otherwise, the code buffer is rejected. Like many security features,
the notion of what can be trusted is naturally dependent on a given
use case. We argue that the policy language provided by Binsweep
combined with its exhaustive scanning of executable CFGs with CFI,
provides a flexible platform for vetting code with varying degrees
of trustworthiness.

In a real deployment of Binsweep, orthogonal isolation tech-
niques may be employed to limit the code reachable at runtime to
code analyzed by Binsweep. This allows collocating both trusted
and untrusted code in the same operating system process within
an intra-process isolation sandbox. Figure 1 provides an example of
such a sandbox where Binsweep, paired with a memory isolation
mechanism (e.g., memory protection keys (MPK)), implements hor-
izontal (between individual tenants) and vertical (between tenants
and a trusted sandbox visor) security boundaries within a shared
operating system process. That is, Binsweep rejects any code buffer

OS Process

A

B

Tenant Basic BlockIndirect Jump Direct Jump

BINSWEEP

BINSWEEP!"#
Hardware Protection

A ≠ B

Intra-Process Sandbox Visor

Tenant A

Boundary Basic Block Indirect JumpDirect Jump

BINSWEEP

BINSWEEP!"#

Hardware
Protection

A ≠ B

Tenant B

Figure 1: Example deployment of Binsweep to enforce hor-

izontal and vertical security boundaries in an intra-process

isolation sandbox with memory protection keys (MPK) or

a similar hardwaremechanism. Binsweep can both ensure

the absence of wrpkru in an untrusted instruction stream as

well as deny jumps outside tenant A’s domain.

that directly jumps outside of the buffer or tries to change the code’s
assigned memory protection settings. Furthermore, the sandbox
terminates any thread that attempts to indirectly jump to a valid
branch within another tenant.

Each tenant containsoneormoreoperatingsystemthreads,which
execute the code mapped into each tenant. The domain associated
witheach tenant isgiven in the lower righthandcornerof each tenant
in Figure 1. The protection against direct jumps is provided by scan-
ning code buffers with Binsweep before loading the code into the
sandbox. Rejecting indirect jumps to different tenants, or the trusted
visor, follows from using BinsweepCFI with a memory isolation
mechanism like MPKs. WhenMPKs are available, the sandbox visor
can assign each tenant anMPK domain, bind all tenant code pages to
the tenant’s domain, and limit each tenant thread’smemory access to
the tenant’s domain. Such a combination of BinsweepCFI andMPKs
will cause the CFI check emitted by Binsweep (see Section 3.2) to
trigger a segmentation violation whenever an indirect jump occurs
to another tenant’s code region. If this occurs, theMPKhardwarewill
observe a deviation from the current thread’s permissions and the
domain of the accessed pages (i.e., domain𝐴≠domain 𝐵 in Figure 1),
raise a segmentation violation, and the sandbox visor will terminate
the offending thread in response. Note that this scheme requires that
Binsweep reject any untrusted code buffer that contains a path to
a wrpkru instruction, which allows a thread to alter its domain. This
can be trivially implemented as a Binsweep policy.

3 SystemOverview

In this section, we provide a high level overview of Binsweep. This
includes a recursive descent sweeping procedure to enforce individ-
ual security policies. We further propose a software control-flow
integrity (CFI) technique (referred to as BinsweepCFI) to be used in
conjunction with Binsweep.

Figure 2 provides a high-level overview of Binsweep. Binsweep
begins by scanning an untrusted input buffer. This input buffer rep-
resents a byte stream. The contents of this byte stream are individual
instructions in the host’s instruction set architecture (ISA).

CCSW ’24, October 14–18, 2024, Salt Lake City, UT, USA Matteo Oldani, William Blair, Lukas Stadler, Zbynĕk S̆lachrt, andMatthias Neugschwandtner

Untrusted
Executable

Recursive Descent
Disassembly

Control Flow
Graph(s)

…
mov rax, 0x9
𝜌!(syscall)
…

Policy Checking𝜌", 𝜌#, … , 𝜌$
Policies Binsweep

Accept

Reject

1

2

3

Figure 2: Architectural overview of Binsweep scanning an executable for policy violations.

Within this stream, a set of possible entrypointsmust be identified.
After these entry points are found, Binsweep performs recursive
descent disassembly until all possible code paths are traversed (step
1). During traversal, Binsweep applies a configurable set of security
policies to each instruction. This allows Binsweep to restrict the
contents of the instruction stream in amodular way (i.e., new restric-
tions can be imposed by authoring orthogonal policies). Note each
policy is allowed to maintain its ownmemory (i.e., keep a snapshot
of the instruction stream). This is helpful for stateful policies that
may require more context than enforcing a simple allowlist to reject
illegal instructions (step 2). After all basic blocks have been scanned,
the executable is accepted if no policy violations occur, and rejected
otherwise (step 3).

3.1 Recursive Descent Sweeping

After a program has been compiled to use BinsweepCFI, we enforce
security policies by performing recursive descent sweeping over the
code buffers’ CFGs. At a high level, “sweeping” the binary in thisway
allows Binsweep to vet every basic block reachable in these CFGs
when the code buffer is executed under BinsweepCFI. The disassem-
bly process is divided into two steps and follows a combination of
two algorithms: recursive descent and linear sweeping. The final
disassembled program is organized into one or more control-flow
graph (CFG) structures. Within the CFGs, each instruction is saved
within a map. The address of the instruction acts as the index for
each saved instruction. Moreover, each decoded instruction main-
tains a reference to the next instruction and one or more previous
instructions in the sequence. This allows Binsweep (and individual
policies) a simpleway towalk forwardor backwardwhile “sweeping”
the buffer. Exceptions to this rule are given by the following:

• Entrypoints, which either contain the end branch instruction
or are referred to by direct jumps, do not have a previous
instruction.

• Terminating instructions, such as returns or interrupts aswell
as the instruction stream’s final instruction, do not have a
next instruction.

Additionally, branching instructions may also have a target in-
struction. To be precise:

• Conditional branches contain two references to next instruc-
tions. These include the branch target if the condition is sat-
isfied and the next instruction if the condition is false.

• Call instructions refer to the branch target and the instruction
following the call, which acts as a return address.

Decode instruction

Is End Branch

Add address to the
entry points

.. 31 ff 48 31 f6 48 31 c0 50 48 bb 2f ..

Bytes still to
be analyzed?

Go to next byte

Yes

No
Exit Phase

Yes

No

Start

Figure 3: Detecting entrypoints with Binsweep.

• Direct jumps simply refer to the jump’s target.
Figure 3 visualizes the first step in the disassembly process. This

scan finds all possible entrypoints which begin with the end branch
instruction. Recall the end branch instruction represents a valid
branch target in the CFI mechanism used with Binsweep. A naive
approach for discovering entrypoints may simply take the first in-
struction of the code buffer, identify individual functions within the
buffer, or begin recursive descent from a known starting entrypoint.
However, this naive approach fails to detect valid entrypoints con-
cealed within data, such as those stored within 64-bit immediate
values.Adversaries canuse thesehiddenentrypoints to evade anaive
scanner and execute malicious code. For this reason, Binsweep at-
tempts to decode an instruction at every byte offset in the untrusted
code buffer to detect any intended and unintended entrypoints. This
ensures that, even if an attack redirects the control-flow to jump to
an arbitrary entrypoint, this execution path is vetted by Binsweep’s
static analysis. The executed instructions are permitted if they are
allowed by the policies given to Binsweep.

Figure 5 defines a simplified ISA relevant to verifying instruction
buffers. In addition, the context maintained by Binsweep is defined
aswell. Note that this syntax is not bound to a particular ISA. Instead,
the syntax captures streams of “straight-line” instructions which,

Binsweep: Reliably Restricting Untrusted Instruction Streams with Static Binary Analysis and Control-Flow Integrity CCSW ’24, October 14–18, 2024, Salt Lake City, UT, USA

when executed, cause the CPU to increment the program counter
(pc) and execute the next instruction, given by the “successor” of the
program counter 𝑠𝑢𝑐𝑐 pc. During this initial scan, each entrypoint
is added to the queue Q that represents the entrypoints fromwhich
to begin recursive descent sweeping.

This recursive descent detects illegal instruction sequences em-
bedded within the code buffer’s CFGs. Figure 6 provides the op-
erational semantics of recursive descent sweeping over a binary’s
code section. This vets the instructions reachable in all the CFGs
containedwithin the code buffer’s entrypoints under a set of policies
given by P. Note that this procedure is represented incrementally
(i.e., small-step semantics), with big-step semantics represented by
⇓. For example, when verifying a conditional jump, the result for
the conditional jump is denoted by the conjunction of Binsweep’s
findings for both possible branches (i.e., bothmust be valid underP).

A simple example policy can be given by 𝜌Allowlist which simply
implements an instruction allowlist to reject undesired instructions
(e.g., syscall). 𝜌Allowlist could be implemented as simply checking
whether the instruction given at the program counter] (pc) belongs
to the set of allowed instructions (] (pc) ∈A)whereA is a set that rep-
resents the allowlist. Since predecessor and successor instructions
are accessible via the program counter pc, more complex policies
can be readily implemented and provided to Binsweep. The context
maintained during recursive descent sweeping is represented by a
4-tuple 𝑐𝑡𝑥 where pc is an address ℓ within the code buffer, Q is the
queue of addresses to be disassembled,Λ is the set of all addresses in
the code buffer visited by recursive descent (in order to avoid loops),
and P denotes the set of policies enforced by Binsweep. Note that
the CFI policy 𝜌CFI is always enabled.

Figure 4 visualizes recursive descent sweeping’s operational se-
mantics. This performs recursive descent scanning over all the entry-
points given within Q which is defined in the algorithm’s first step.

Binsweep recursively scans each address ℓ in Q until Q is empty
(i.e., the “Last Return” case in the semantics). Note that retmay be
substituted for another terminating instruction that represents the
end of a basic block (i.e., a halting instruction). Moreover, this queue
of addresses is updated each time the instruction at an address is
decoded (or “visited”) for the first time (see “Allowed Op” in the
semantics). Thus, in the end, Q contains not only the canonical en-
trypoints, represented by the chosen end branch instruction, but also
the addresses of all direct jumps observed during recursive descent.
For each address ℓ inQ,Binsweepobtains the corresponding instruc-
tion at the address while consulting the map of visited instructions
𝑣𝑖𝑠𝑖𝑡𝑒𝑑 to process the instruction. The processing consists of the
following cases:

• The instruction is out of range, meaning that it was impos-
sible to decode the instruction since it is located outside the
code buffer. In this case, a special placeholder instruction has
already been created. Thus, Binsweep simply continues to
the next starting position to be processed. The detection of
this kind of instruction is delegated to the verification phase.

• The instruction is a terminating instruction, for example a
RET, INT3, or HLT in x86. In this case, Binsweep simply pro-
ceeds with the next address in the queue. We do this because
terminating instructions require no further processing since
they lack a reference to a successor instruction by definition.

Instruction Queue

Is the
queue empty?

Terminating
Instruction?

Decode next instruction

Exit Phase

Branching
Instruction?

Indirect
Branch?

Unconditional
Branch?

Pop from the queue

Yes

Unconditional
Branch?

Set next instruction

Register previous
instruction

Yes

No

Yes

Yes

No

No
Decode target

instruction

Set target instruction

Set next instruction

Yes

No

No

Yes

No

Figure 4: Processing instruction streamswith Binsweep.

We consider instructions that trigger an exception (i.e., INT3
and HLT in x86) as terminating since they will always raise a
signal when executed in user mode. Whether these instruc-
tions are valid is determined by the verification phase (i.e.,
the security policies P passed to Binsweep).

• The instruction is a branch. This canbe split into the following
sub-cases:
– An indirect unconditional branch simply causes Binsweep
to go to the next address in Q since we cannot compute
the target address. In the unconditional branch case, the
next address to process is simply the instruction’s successor.
Note that these instructions are restricted by BinsweepCFI.
Thus, theymay only jump to one of the entrypoints discov-
ered by the initial phase.

– An indirect call is considered a normal non-branching in-
struction. As with unconditional indirect branches, we can-
not compute the target of an indirect call. However, CFI
guarantees that the call will land on a known entrypoint.

– A conditional branch will have its target address ℓ decoded.
The target address will be added toQ. Next, Binsweep con-
tinues with the computation of the conditional branch’s
successor instruction (i.e., the branch not taken).

CCSW ’24, October 14–18, 2024, Salt Lake City, UT, USA Matteo Oldani, William Blair, Lukas Stadler, Zbynĕk S̆lachrt, andMatthias Neugschwandtner

program 𝑃 ::=]
instruction] ::=op | endbranch | jmp ℓ | jz ℓ | ret
op op ::=mov 𝜎, 𝜎 |add 𝜎, 𝜎 | cmp 𝜎, 𝜎 | jmp r

|halt
operand 𝜎 ::= r | ℓ |a
locations ℓ ::=memory addresses
registers r

values a

program counter pc

policies P : {𝜌1, 𝜌2, ..., 𝜌𝑛}
queue Q : ℓ1 :: ℓ2 :: ... :: ℓ𝑛
visited Λ : {ℓ}

Figure 5: A syntax for a simple instruction set architecture

(ISA).

– An unconditional direct branch has its target address de-
coded and set as the successor instruction. Once a termi-
nating instruction is encountered, Binsweep continues
disassembling the address at the top of Q (i.e., 𝜏1).

• In all the other cases, the instruction’s successor is decoded.
The address of the successor is computed by adding the length
of thecurrent instruction to its address in thecodebuffer.Once
a terminating instruction is encountered, Binsweep recur-
sively runs this phase by processing the address 𝜏1 at the top
of Q.

In addition to the disassembling algorithm, there are two addi-
tional checks on the code buffer to ensure the disassembly is sound.
Binsweep verifies that no end branch instruction is placed outside
of the executable section of an executable file. This ensures that
unaligned memory mappings at boundaries cannot produce valid
unintended entrypoints.

3.2 Software Control-Flow Integrity

Binsweep assumes that all valid entrypoints to the code are marked
with a unique instruction (i.e., a specific byte pattern). In addition, all
indirect branch targets are also marked with this unique instruction.
Note that the same instruction can be used for both entrypoints (i.e.,
valid targets that begin executing the instruction stream as well as
indirect branch targets within the stream).

Binsweep assumes that a CFI mechanism is present when exe-
cuting the untrusted code buffer. This CFI mechanism ensures that
indirect branches can only land at locations that contain the unique
instruction that denotes a branch target. This CFI assumption can
be enforced either by hardware-assisted technologies, such as Intel
Control-Flow Enforcing Technology (CET), or using a software im-
plementation. The former marks all the forward-edge entrypoints
(i.e., the destination of a call) with a special instruction, ENDBR64.
All the the backward-edge targets (i.e., valid return locations) are
guarded by a privileged shadow stack. In case of a mismatch, either

due to a missed ENDBR64 or divergence of the stack and shadow
stack, the CPU traps and the kernel kills the process.

While Binsweep can verify code buffers using an existing CFI
mechanism that implements both backward and forward-edge CFI,
we propose BinsweepCFI as a software CFI solution. BinsweepCFI
can also represent all valid forward-edge targets with a special end
branch instruction. In our setting, we can simply reuse ENDBR64
which evaluates to a wide NOP instruction on hardware that lacks
support for Intel Control-Flow Enforcement Technology (CET).

When hardware lacks support for a shadow stack, software CFI
can substitute all return instructions with indirect jumps back to the
stored instruction pointer. Finally, before each indirect jump, soft-
ware CFI looks ahead at the memory contents of the branch target
to ensure the presence of the unique instruction that represents the
beginning of a valid branch target (i.e., ENDBR64). The advantage
of using BinsweepCFI is that Binsweep can check the validity, via
static analysis, of the softwareCFI’s implementation.Binsweep does
this by enforcing a policy 𝜌𝐶𝐹𝐼 , enabled by default, to confirm that
required control-flow patterns are correctly generated in the code
buffer and not vulnerable to tamperingwith interleaved instructions
(see Section 3.3).

This is accomplished by analyzing both forward and backward-
edge jumps during an LLVM compiler pass. BinsweepCFI works
by rewriting all return instructions as forward jumps to a register
holding the return address for a function call. This is convenient
because the compiler transformation reduces the problem of en-
forcing both backward and forward-edge CFI to simply enforcing
forward-edge CFI. That is, every return instruction is rewritten as
an indirect branch to the contents of the stored instruction pointer
located on the stack. In our implementation, return instructions are
still identifiable since all return instructions jumpdirectly to a special
“return thunk” which performs the indirect branch (see Section 4).

Next,BinsweepCFI rewrites all indirect jumps (i.e., forward edges)
through registers to implement a check for the unique instruction
that represents the end of a branch (see Figure 7). In this figure, a sim-
ple indirect branch (i.e., jmp %rax) is transformed into the sequence
of instructions given in the figure. Due to how LLVM schedules in-
dividual instructions during code generation, potentially malicious
instructions may become interleaved within this CFI sequence. In
this example, such an instruction provided by the adversary in the
untrusted buffer is highlighted in red. BinsweepCFI’s principal goal
is to generate CFI patterns without checking for these instructions.
However, the default Binsweep policy, 𝜌𝐶𝐹𝐼 , checks all indirect
branches in a code buffer to confirm the CFI sequence shown in Fig-
ure 7) is followed correctly and reject any buffers where malicious
instructions are interleaved in a CFI sequence (see Section 3.3).

The generated CFI sequence consists of the following operations.
First, an instruction examines thememory contents of the branch tar-
get (i.e., the target register). To confirm that the branch target refers
to the endbranch instruction, the CFI sequence performs a 32-bit
dereference from the target register and stores the contents of mem-
ory within a 32-bit compare register. (The choice of these registers is
up to the compiler or adeveloper in the case agivenprogramcontains
handwritten assembly). To check that the compare register is equal
to the end branch instruction, the sequence performs an unsigned
32-bit addition on the compare register with the additive inverse of

Binsweep: Reliably Restricting Untrusted Instruction Streams with Static Binary Analysis and Control-Flow Integrity CCSW ’24, October 14–18, 2024, Salt Lake City, UT, USA

pc,Q,Λ,P⊢𝜌1] (pc)∧𝜌2] (pc)∧...∧𝜌𝑛] (pc)
Allowed Op

pc,Q,Λ,P⊢ ⟨𝑠𝑢𝑐𝑐 pc,Q,{pc}∪Λ,P⟩
pc,Q,Λ,P⊢¬𝜌1] (pc)∨¬𝜌2] (pc)∨...∨¬𝜌𝑛] (pc)

Illegal Op
⊥

pc,Q,Λ,P⊢ jmp ℓ Λℓ = 𝑓 𝑎𝑙𝑠𝑒
Jump

pc,Q,Λ,P⊢ ⟨ℓ,Q,{pc}∪Λ,P⟩
pc,Q,Λ,P⊢ jz ℓ Λℓ = 𝑓 𝑎𝑙𝑠𝑒

Conditional Jump
pc,Q,Λ,P⊢ ⟨ℓ,Q,{pc}∪Λ,P⟩⇓𝑏𝑡 ∧⟨𝑠𝑢𝑐𝑐 pc,Q,{pc}∪Λ,P⟩⇓𝑏𝑓

pc,Q,Λ,P⊢Λ pc=𝑡𝑟𝑢𝑒
Seen

𝑡𝑟𝑢𝑒

pc,Q,Λ,P⊢] (pc) =out of range,{𝜏1,𝜏2,...,𝜏𝑛 }
Out of Range

pc,Q,Λ,P⊢ ⟨𝜏1,{𝜏2,...,𝜏𝑛 },Λ,P⟩
pc,Q,Λ,P⊢ret,{𝜏1,𝜏2,...,𝜏𝑛 }

Return
pc,Q,Λ,P⊢ ⟨𝜏1,{𝜏2,...,𝜏𝑛 },Λ,P⟩

pc,Q,Λ,P⊢ret,{}
Last Return

𝑡𝑟𝑢𝑒

Figure 6: Operational semantics of Binsweep’s recursive descent sweeping procedure on instructions in a high level ISA.

1 mov r𝑡𝑎𝑟𝑔𝑒𝑡 ,r

2 mov32 r𝑐𝑜𝑚𝑝𝑎𝑟𝑒 ,(r𝑡𝑎𝑟𝑔𝑒𝑡)
3 add32 r𝑐𝑜𝑚𝑝𝑎𝑟𝑒 ,endbranch

−1

4 add r𝑐𝑜𝑚𝑝𝑎𝑟𝑒 ,0𝑥1000
5 cmp32 r𝑐𝑜𝑚𝑝𝑎𝑟𝑒 ,0
6 jz succeed
7 halt

8 succeed:
9 jmp r

Figure 7: An indirect branch transformed by BinsweepCFI

(Intel syntax). This code is vulnerable to tampering due to

an interleaved instruction highlighted in red (line 4). This

instruction alters r𝑐𝑜𝑚𝑝𝑎𝑟𝑒 tomake an invalid branch target

pass the CFI check. However, the 𝜌𝐶𝐹𝐼 policy, enabled by

default, rejects this snippet and any pattern that tampers

with r𝑡𝑎𝑟𝑔𝑒𝑡 or r𝑐𝑜𝑚𝑝𝑎𝑟𝑒 .

the end branch instruction (i.e., endbranch+endbranch−1 =0 in
32-bit unsigned arithmetic).

This ensures that adding the CFI check throughout a compiled
program does not inadvertently introduce valid branch targets at
every CFI pattern (i.e., comparing directly to𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑛𝑑 wouldmake
the address of the operand in memory a valid branch target). If the
sumof the branch target and endbranch−1 equal zero, a conditional
jump will set the program counter to the original indirect branch
and the programwill continue now that the branch target has been
verified. If the sum is non-zero, then theCFI sequence falls through to
a failure handler that halts the process before an adversary can take
arbitrary control of the program counter. Note that an adversary can
freely jump to any location directly in their untrusted code buffer’s
location in process memory. However, this CFI pattern prevents the
adversary from jumping to arbitrary locations within their sandbox.

3.3 BinsweepCFI Policy

To verify the validity of each CFI sequence within an untrusted code
buffer, we implement the 𝜌𝐶𝐹𝐼 , which is enabled by default, in the
following way. During policy checking, if we encounter an indirect
branch, this triggers a backward linear scan for every instruction
shown in black given in Figure 7. That is, assume we detect the in-
direct branch to a register r on line 9. If this is a valid indirect branch,
wemust see a conditional jump to a failure routine before the indirect
jump (line 6). This must be preceded by a 32-bit unsigned compar-
ison instruction that compares a register to the immediate value of
0 (line 5). Once found, the register encountered in this comparison
is referred to as the compare register r𝑐𝑜𝑚𝑝𝑎𝑟𝑒 .

Next, a 32-bit add instruction on r𝑐𝑜𝑚𝑝𝑎𝑟𝑒 must occur before the
compare, and the additive inverse of endbranch, endbranch−1,
must be an instruction operand in this instruction (line 3). This must
also be preceded by a 32-bit move instruction from a register into
r𝑐𝑜𝑚𝑝𝑎𝑟𝑒 (line 2). The source register of this move instruction is
referred to as the target register r𝑡𝑎𝑟𝑔𝑒𝑡 .

Finally, a 64-bit move instructionmust occur from the destination
of the originally detected indirect jump and r𝑡𝑎𝑟𝑔𝑒𝑡 (line 1). If any
of these conditions are not met, the state machine that implements
this policy cannot advance and reach an accepting state. Thus, 𝜌𝐶𝐹𝐼
will reject the detected indirect jump after encountering either an
endbranch or after scanning a fixed amount of instructions back-
ward from the instruction, whichever occurs first.

In practice, LLVMwill often interleave other instructions from
the untrusted buffer located around the indirect branch. Instead of
imposing restrictions on the LLVM toolchain and its use for gen-
erating code buffers for Binsweep, we simply permit interleaved
instructions to be placed within the CFI pattern. This requires that
𝜌𝐶𝐹𝐼 must ensure that each interleaved instruction preserves the
contents of r𝑡𝑎𝑟𝑔𝑒𝑡 and r𝑐𝑜𝑚𝑝𝑎𝑟𝑒 , as their modification can easily
allow an adversary to jump to invalid target branches and evade
Binsweep. For example, in line 4 in Figure 7, an adversary could
jump to an arbitrary memory location by crafting 𝑟𝑒𝑔 to refer to a
memory location that is almost like endbranch.

That is, suppose r refers to a memory location that contains the
bytes F3 0f 0e fa. This is not equal to endbranch, and hence
Binsweepwill not enqueue the address within Q during recursive
descent sweeping. If this is located within a data section, then it is
unlikely to be part of any other basic block scanned by Binsweep.
Therefore, an adversary could store a shell code that breaks out of a

CCSW ’24, October 14–18, 2024, Salt Lake City, UT, USA Matteo Oldani, William Blair, Lukas Stadler, Zbynĕk S̆lachrt, andMatthias Neugschwandtner

sandbox or issues system calls following this byte pattern, and then
do an indirect jump to the location of the pattern in memory. When
the program counter reaches line 5 in the CFI pattern, observe that
r𝑐𝑜𝑚𝑝𝑎𝑟𝑒 +0𝑥1000+endbranch−1 =0. This causes the compare to
succeed and jump to r, bypass theCFI check, and execute an unswept
payload. However, Binsweep always rejects any code buffer that
contains this snippet, since the interleaved malicious instruction
alters r𝑐𝑜𝑚𝑝𝑎𝑟𝑒 and 𝜌𝐶𝐹𝐼 always rejects such instructions while
scanning CFI patterns.

A simple approach to rejecting invalid interleaved instructions
may rely on a limited allowlist of instructions and check during scan-
ning that the target and compare registers never appear as operands
within an interleaved instruction. Though this can prevent the sim-
plest attacks, the semantics of x86 instructions are complex, with
different prefixes used to modify instruction behavior and switch
into different modes (e.g., VEX for vector extensions).

To prevent the use of exotic extensions from corrupting the CFI
pattern,we use our disassembler’s support for enumerating registers
modified by each decoded instruction (see Section 4). This general
approach allows 𝜌𝐶𝐹𝐼 to examine any valid instruction and confirm,
up to the correctness of our chosen disassembler, that an interleaved
instruction preserves the contents of the target and compare regis-
ters, and hence preserve the semantics of the CFI sequence. In our
implementation, we use a combination of allowlists and instruction
effect tracking to reject dangerous interleaved instructions.

Effect tracking individual instructions allows Binsweep to de-
termine whether a given instruction can threaten the integrity of
BinsweepCFI’s emitted CFI check. For example, recall the offending
instruction in Figure 7 (line 4) which increments the contents of the
branch target stored in r𝑐𝑜𝑚𝑝𝑎𝑟𝑒 to make an invalid branch target
appear valid. For every interleaved instruction, Binsweep computes
a set of modified registers r𝑚𝑜𝑑𝑖 𝑓 𝑖𝑒𝑑 . If either r𝑡𝑎𝑟𝑔𝑒𝑡 or r𝑐𝑜𝑚𝑝𝑎𝑟𝑒

is in r𝑚𝑜𝑑𝑖 𝑓 𝑖𝑒𝑑 , then the CFI check fails and a policy violation is
raised, as in Figure 7. Otherwise, the instruction is permitted, and
the statemachine continues on towards the final accepting state that
completes recognizing the full CFI pattern.

4 Implementation

In this section, we describe our prototype implementation of Bin-
sweep. This prototype consists of 9,971 lines of Java code which
is compiled to an executable program with GraalVM Native Im-
age [37, 40]. This prototype implements the recursive descent sweep-
ing algorithm described in Section 3 to scan untrusted instruction
streams for policy violations. The CFI component, BinsweepCFI, is
implemented as an LLVM compiler pass in 237 lines of C++ code,
and verified as a Binsweep policy.

4.1 Disassembly

We utilize Intel XED to decode individual x86 instructions. XED is
a robust disassembler used by the popular Intel PIN dynamic binary
instrumentation framework [21]. In addition, XED has been used by
virus scanners, which often analyze untrusted code. Since XED is a
C library, we make use of Native Image’s foreign function interface
(FFI) features to easily call out to C code from Java. This provides a
convenient, and memory safe way to analyze the contents of entire
executable files.

Note that, during disassembly, Binsweep need not explicitly con-
struct CFGs. Instead, Binsweepwalks the paths of individual CFGs
givenwithin the code buffer, and avoids the overhead ofmaintaining
a large collection of CFGs on which to perform analysis. This keeps
the resource overhead of Binsweep low, both in terms of memory
and CPU time, when compared to other, more full featured binary
analysis frameworks,which tackle theharderproblemof liftingCFGs
while making fewer assumptions on the underlying executable. In
oursetting, theassumption thatanexecutableconformstoCFI simpli-
fies Binsweep’s main task of vetting code buffers for individual poli-
cies. Towards this end, the set of visited instructions Λ can be main-
tained using a simple JavaSet alongwith the queue of entrypointsQ.

4.2 Software Control-Flow Integrity with LLVM

The softwareCFI approach outlined in Section 3 utilizes the ENDBR64
instruction as CFI’s end branch instruction on x86. This instruction
has the benefit that the instruction sequence that implements it was
previously used as a wide NOP pattern on earlier CPUs. This implies
that BinsweepCFI can support existing CPUs that may lack support
for Intel’s indirect branch tracking (IBT) which is a part of Intel’s
Control-Flow Enforcement Technology (CET). Furthermore, on op-
erating environments where CET support may be incomplete, our
software CFI approach can provide an easy to use solution for CFI
in software.

Rewriting every backward edge into a forward edge is accom-
plished using an LLVM compiler pass. Furthermore, enumerating all
forward edges after the transformation enables our compiler pass
to harden each forward edge with a CFI check. Our compiler pass
considers forward edges represented as either calls or indirect jumps
(i.e., a jump through a register value). This CFI check first computes
the target of the branch. The compiler pass then emits code that loads
the contents of memory at the branch target into a 32-bit register.
This is necessary to ensure the the sum of the contents of the branch
target and the additive inverse of ENDBR64 equal 0 (i.e., overflow
the 32-bit register to 0). This allows us to check for the end branch
instruction throughout the executable without inadvertently intro-
ducing valid entrypoints at every CFI check. If the CFI check passes,
the emitted CFI code then jumps to the branch target as usual. If the
check fails, then the program halts, and execution stops.

4.3 BinsweepCFI Policy

Recall that the CFI policy is always enabled in Binsweep. This en-
sures that untrusted code buffers adhere to our CFI scheme, and
provides confidence in Binsweep’s verification results. Each for-
ward edge, be it an indirect jump or call instruction, is verified using
an automaton based Binsweep policy. This policy uses the ability
to traverse instruction predecessors to walk backward from each
indirect jump to verify the completeness of the CFI pattern.

The initial state begins by examining the jump to some location,
possibly a register or absolute address in the case of a call. To reach
the automaton’s accepting state, the policy must work backwards
in the current instruction sequence from the program counter pc to
confirm that the jump is made after a conditional branch, that the
conditional branch is taken if and only if the previously defined CFI
check succeeds, and the end branch instruction is detected from the
register referred to in the checked branch.

Binsweep: Reliably Restricting Untrusted Instruction Streams with Static Binary Analysis and Control-Flow Integrity CCSW ’24, October 14–18, 2024, Salt Lake City, UT, USA

Observe that this procedure can be accomplished by examining
predecessors in the visited instruction stream until either the ac-
cepting state is reached, or the end branch instruction that started
the instruction sequence is reached. If the latter occurs, then the
automaton ends in a rejecting state, and the CFI policy rejects the
sequence as invalid. As discussed in Section 3, LLVMmay interleave
instructions from the programwithin the CFI check for an indirect
branch. Hence, hardening approaches were required to ensure that
interleaved code cannot interfere with the fidelity of the CFI check
(i.e., clobbering the contents of the branch target stored within a
register). This can be easily accomplished by using XED’s introspec-
tion features on individual instructions. For each visited instruction,
we reject any instruction whose operands are modified and those
operands are either r𝑡𝑎𝑟𝑔𝑒𝑡 or r𝑐𝑜𝑚𝑝𝑎𝑟𝑒 . In addition, instruction
prefixes must be heavily vetted to prevent modifying these sensitive
registers, or altering the flow of execution to an unverified instruc-
tion stream (e.g., jumping into the middle of the next instruction).
XED allows querying the categories of prefixes present on each in-
struction, and this allows us to remove common prefixes to disable
attacks by modifying regular instructions, while also preserving the
ability to execute extensions, such as REX, and VEX.

4.4 Hardening Policies for x86

Wehave found that restricting untrusted code buffers for real ISAs as
extensive as x86presents a challenge for authoringpolicies.Nonethe-
less, the flexibility provided by Intel XED in dissecting individual
instructions (e.g., rejecting instructions based on explicit and im-
plicit operands), allows a policy to detect subtle unwanted effects
in individual instructions and reject them as a result.

5 Evaluation

In this section, we evaluate Binsweep to answer the following re-
search questions.

• Can Binsweep detect malicious, and concealed, code paths
embedded in executables?

• Is Binsweep’s performance overhead, both while verifying
binaries and enforcing software CFI at runtime, acceptable
for real world applications?

To answer these questions, we run Binsweep on code buffers that
conceal malicious instruction sequences within the buffer’s CFG.
That is, a naive linear scan of the buffer’s disassembly would mistak-
enly flag these buffers as safe (i.e., false negatives). Furthermore, we
evaluate Binsweep on both benchmarks (SPEC CPU 2017) and real
world applications. Our results show that Binsweep can both verify
the instructions within complex real world binarys’ CFGs and pro-
tect the integrity of their execution with manageable performance
overhead.

5.1 Experimental Setup

All of our experiments were run on a Red Hat Derived Linux distri-
bution on a Intel Core i9-13900Kmachine with 64GB of RAM.

5.2 Attack Case Studies

In this section,we present case studieswhereBinsweep detectsmali-
cious instructions, includingattempts tobreakoutofan intra-process

Benchmark BinsweepCFI Overhead Protected Edges

500.perlbench +0.02 % 4,532
502.gcc +1.96 % 24,301
505.mcf +1.46 % 144
520.omnetpp +6.25 % 22,905
523.xalancbmk +0.00 % 25,167
531.deepsjeng +1.15 % 240
541.leela +0.00 % 1,693
557.xz +4.21 % 877

Table 1: SPECint benchmarks from SPEC CPU2017 with

average observed overhead and number of edges protected

by BinsweepCFI.

sandbox, issue system calls, set up a return oriented programming
(ROP) chain, or bypass CFI. In addition to these attack case studies,
we fuzz tested the XED instruction decoder used by Binsweep for
over three CPUmonths with AFL++ [14], and detected no crashes.

Memory Protection Key Escape. Within an intra-process appli-
cation sandbox hardened with Intel memory protection keys (MPK),
untrusted guest applications must not be able to issue the sensitive
write protection key register for user pages wrpkru instruction. This
user-mode instruction effectively allows an adversary to drop all re-
strictions enforced byMPK and break out of the sandbox. Binsweep
can detect attempts to execute wrpkru, evenwhile it is hiddenwithin
an untrusted code buffer’s data (i.e., just after a function or stored
within the immediate value of an instruction).

Inourevaluation,wedefinedacodebuffer thatconcealedawrpkru
instruction into an immediate value for a mov instruction. Later on in
the instruction sequence, a relative jump places the program counter
in themiddle of the mov instruction, and breaks out of the sandbox by
writing all zeros to the PKRU (i.e., escalates read and write access to
allMPK domains).Binsweep rejected this code buffer, by recursively
sweeping the instructions reachable from the jump to the middle of
the instruction. Note that this approach removes the possibility for
false positives, since the instruction embedded in the intermediate
value would be deemed unreachable if the relative jump is absent.
In contrast to more naive approaches like linear instruction scan-
ning, recursive descent sweeping can explore all program behaviors
reachable from a code buffer’s CFG.

Concealed Syscalls. The situation above can also be extended to
reject syscalls, to extend a security policy for an intra-process sand-
box. In this setting, allowing an adversary to interact directly with
the kernel can have undesired consequences, including interfering
with other hosts on the sandbox via confused deputy attacks [12]. In
our evaluation, we demonstrated that attempts to reach a syscall
instruction embedded directlywithin the code buffer, was always de-
tected by Binsweep. This includes scenarios where the code buffer
jumps into the middle of instructions, or directly to data located
outside the function.

Return Oriented Programming (ROP) Chain. A common attack
vector to hijack a process is to place a return oriented programming
(ROP) chain somewhere in attacker controlled memory and perform

CCSW ’24, October 14–18, 2024, Salt Lake City, UT, USA Matteo Oldani, William Blair, Lukas Stadler, Zbynĕk S̆lachrt, andMatthias Neugschwandtner

Program Binary Size (MB) Binsweep Verification Time (s) CFG Recovery Time in angr (s) Basic Blocks Protected Edges

NGINX 1.3 0.087 29 25,198 3,199
CPython 16.0 0.258 116 106,095 9,261
Micronaut 77.0 4.625 – 578,047 107,787
GraalPy 362.0 18.131 – 2,474,585 384,159

Table 2: Statistics for verifying binaries for widely used programs with Binsweep, the amount of time needed to verify the

entire binary (including building the CFG) with Binsweep running substantially faster compared to only recovering CFGs

with angr, a state of the art binary analysis framework. Also shown are the no. of basic blocks in the binary’s CFGs and the

number of forward edges protected by BinsweepCFI. For both theMicronaut helloworld and GraalPy interpreter, angr failed

due tomemory exhaustion after 70 and 100minutes, respectively.

a stack pivot to change the stack pointer to attacker controlled mem-
ory. Since BinsweepCFI enforces backward-edge CFI by rewriting
all return instructions as jumps to the stored instruction pointer, any
attempt to return to a stack pivot will be rejected by the runtime.
In our evaluation, we defined a ROP policy 𝜌ROP that rejects stack
pivots in the code buffer (i.e., xchg rsp, rax). Furthermore, the
always enabled CFI policy rejected any indirect jumps that lack the
CFI code pattern described in Section 4, which would be used to
jump to the pivoted stack pointer and start the ROP chain.

CFI Bypass. A significant effort went into investigating approaches
to defeat the CFI pattern introduced byBinsweepCFI since this is the
simplest approach to gain arbitrary code execution within a process
protected by Binsweep. The simplest approach would be to use pre-
fixes on jump instructions to land in themiddle of swept instructions
and thus start executing an unverified instruction stream. Other
attacks can take advantage of other general purpose prefixes (i.e.,
REP and REPZ) tomodify the sensitive r𝑡𝑎𝑟𝑔𝑒𝑡 and r𝑐𝑜𝑚𝑝𝑎𝑟𝑒 registers
when assigned registers modified by certain instructions.

Furthermore, different extensions to the x86 instruction set pose
problems, such as the vector extensions (VEX) that enable working
on wide operand types. To mitigate CFI escape from either direct
or indirect modifications to r𝑡𝑎𝑟𝑔𝑒𝑡 and r𝑐𝑜𝑚𝑝𝑎𝑟𝑒 we implemented
a combination of a restricted allowlist for interleaved instructions,
rejected common instruction prefixes (aside from those that enable
usefulmodes), and implemented operand trackingusingXED’s avail-
able APIs. This allowed us to build a corpus of test programs that
defeat a simpler implementation of 𝜌𝐶𝐹𝐼 (i.e., based solely on instruc-
tion allowlists and limited operand checking) and gain confidence
in our current implementation.

5.3 Performance Case Studies

In this section, we first evaluate the performance overhead of enforc-
ingCFIusingBinsweepCFI, the compilerpass that rewritesprograms
touseour softwareCFI implementation.Wepresent theperformance
overhead of BinsweepCFI on the SPECint benchmarks from SPEC
CPU 2017, and examine several case studies in real world appli-
cations vulnerable to exploits from remote adversaries (i.e., web
servers, language interpreters, and databases). We then compare
the performance of Binsweep with angr, a state of the art binary
analysis framework.

SPEC CPU 2017. To establish a baseline performance overhead we
can expect for running programs with Binsweep’s software CFI, we
run the SPECint benchmarks from the SPEC CPU 2017 suite. These
applications implement a broad range of functionality and provide
insight into Binsweep’s performance across domains, from parsing
compressed files, video, XML to scientific computing applications.
Focusing on the SPECint benchmarks allows us to test Binsweep’s
performance across a variety of domains, as opposed to programs
in SPECfp that primarily pressure a CPU’s floating point arithmetic
capabilities. Furthermore, theBinsweep softwareCFI toolchain does
not support Fortran, since such programs are rarely accessible to
adversaries.

Table 1 summarizes the performance overhead of using Bin-
sweep’s software CFI on the SPECint benchmarks. Overall, Bin-
sweep incurs 6.25% performance overhead in the worst case. Note
that the performance overhead of Binsweep can vary for both small
and large programs. That is, an application with many protected
edges will not necessarily incur the worst case overhead. Instead, an
application that exercises more of its branches will incur more over-
head. Throughout the benchmarks, the performance overhead stays
low, and only rises to a manageable overhead for a few benchmarks.

RealWorld Programs. Since the SPEC CPU benchmarks typically
contain programs that process trusted inputs (e.g., simulating Shor’s
algorithm), we measure the performance overhead of Binsweep on
applicationsmost vulnerable to control-flow hijacking exploits from
remote attackers. Furthermore, we measure Binsweep’s runtime
while verifying binaries for realworld programs. Table 2 summarizes
the time required for verifying real world software with Binsweep,
along with statistics on the programs under analysis, such as the
number of basic blocks and edges protected by BinsweepCFI.

To showcase Binsweep’s runtime scalability on binaries with
increasing size, we included a Micronaut helloworld1 application
built with Oracle GraalVMNative Image [37, 40], and GraalPy, the
GraalVM implementation of Python2.

Here, “protected edges” denote the number of indirect jumps
restricted by BinsweepCFI, whereas the number of verified basic
blocks include the basic blocks to which indirect branches cannot
jump, due to the restrictions of BinsweepCFI. Overall, Binsweep
processes real world binaries very efficiently, especially when com-
pared to full-fledged static analysis tools that require constructing

1https://guides.micronaut.io/latest/creating-your-first-micronaut-app.html
2https://www.graalvm.org/python/

https://guides.micronaut.io/latest/creating-your-first-micronaut-app.html
https://www.graalvm.org/python/

Binsweep: Reliably Restricting Untrusted Instruction Streams with Static Binary Analysis and Control-Flow Integrity CCSW ’24, October 14–18, 2024, Salt Lake City, UT, USA

knowledge bases in memory or disk for a binary before performing
analysis. In contrast,Binsweep iteratively scans all basic blocks once
while applying all relevant policies to each encountered instruction.
This makes Binsweep especially suitable for verifying untrusted
code buffers as a part of vetting code for inclusion in a production en-
vironment. In addition, our results demonstrate that Binsweep can
efficiently analyze large, complex executables that can be hundreds
of megabytes in size.

Comparison toangr. The angr framework is a state of the art binary
analysis framework [30] which supports amyriad of security related
binary analysis workflows, including recovering CFGs, decompi-
lation, and symbolic execution. Furthermore, angr placed in the
DARPA Cyber Grand Challenge (CGC) program [2] and is actively
used in the DARPA AI Cyber Challenge (AIxCC) program [3]. In
contrast, Binsweep is designed to simply discover and exhaustively
search CFGs in untrusted code buffers to prove the absence of mali-
cious instruction sequences and conformance to our CFI technique.
As a result, Binsweep performs verification on CFGs much faster
than angr by default, as shown by our performance comparison visu-
alized in Table 2. This experiment showed that Binsweep often runs
orders of magnitude faster than angr. In addition, angr was unable to
recoverCFGs for the large executables included in our evaluation (i.e,
a Micronaut application and the GraalPy interpreter) within an hour.
Contrast this withBinsweep analyzing these executables in seconds.

In this experiment, we used angr version 9.2.113. While running
angr, we simply recovered CFGs of our evaluation’s real world pro-
gramsbyusingdefaultparameters forangr, exceptwedisabled theau-
tomatic discovery of library dependencies. To recover CFGs,we used
angr’s CFGFast routine. This mode uses static analysis to recover a
CFG, in contrast to more advanced, and slower modes, that rely on
symbolic execution to recover the destination of indirect branches.
Furthermore, we excluded the amount of time needed to create the
angr project for each executable, whereas Binsweep’s verification
time includes loading and verifying the executable. All analysis was
restricted to the main executable. Likewise, the policies applied by
Binsweep are not specialized for the programs under analysis, they
are the default policies automatically applied to every program.

Ourresults indicate thatBinsweepcanprovideaperformant static
binary analysis for vetting the security of untrusted code buffers
in production sandbox systems, as opposed to supporting general
purpose binary analysis tasks. In practice,Binsweep, like angr, easily
verifies both executables and all supporting libraries, including the
C Standard Library. In this experiment, Binsweep also scanned the
recovered CFGs for illegal instructions and for valid CFI sequences.
We expect that scanning recovered CFGs in angr can be done effi-
cientlywith amore specialized configuration.We only recover CFGs
in this experiment to highlight Binsweep’s efficiency for recovering
CFGs and enforcing policies simultaneously. The large executables
in our evaluation emphasizeBinsweep’s efficiency. As the size of the
executable reaches hundreds of megabytes, the speed of performing
analysis stays within tens of seconds. In contrast, angr configured
with default parameters takes more than an hour to recover these
executable’s CFGs before exiting with an out of memory error. We
emphasize that this is not a deficiency of angr, but rather the ben-
efit of enumerating, as opposed to explicitly constructing, CFGs to
enforce security policies.

No. of Clients Performance Overhead

512 +4.33 %
1,024 +0.15 %
2,048 +0.87 %
4,096 +1.58 %
8,192 +6.51 %

Table 3: Performance overhead (measured by decrease of

request throughput) of running NGINXwithBinsweepCFI and

a baseline while handling 1,000,000 total requests generated
from a varying number of clients. As the number of clients

increases, the performance overhead staysmanageable.

NGINX. The NGINXweb server is one of the most widely used web
servers that powers 34.2% of the Internet’s publicly reachable hosts.
In our evaluation, we built NGINX version 1.25.4 with BinsweepCFI,
and stressed both the CFI hardened and baseline server using the
Apache Bench ab tool. Table 3 summarizes the performance over-
head, in terms of decreased request throughput, when using NGINX
protected by BinsweepCFI. In this experiment, eight NGINXworker
processes,which runon16 availableCPUcores, accept requests from
an increasing number of clients. As the number of clients increases,
the performance overhead stays manageable at 6.55%. These results
show thatBinsweepCFI can protectweb servers during times of high
load with a manageable amount of performance overhead.

Microservice. Micronaut is a Java framework for developing cloudmi-
croservices. The GraalVMNative Image compiler can emit efficient
native executables fromMicronaut services compiled to Java.During
our evaluation, we used Oracle GraalVMNative Image version 23
to compile a native executable for a simple helloworldMicronaut
service. We verify this Micronaut executable with Binsweep, and
demonstrate how our approach can scale to large complex binaries.
Note that, the executables emitted by Native Image represent Java
programs, and all their dependencies, in the target platform’s instruc-
tion set architecture (ISA). In addition to the microservice, the entire
Micronaut framework used by the microservice, all Java library de-
pendencies, and a runtime to support components like a garbage
collected heap all compiled into the microservice’s executable. This
demonstrates Binsweep’s scalability and robustness for verifying
real world microservices and highly complex binaries.

Python Interpreters. The CPython interpreter is the most used im-
plementation of the popular Python programming language. Web
applications that regularly interactwith untrusted remote clients are
often implemented inPython.Thismakes theCPython interpreter an
attractive attack surface shared amongst all pythonweb services. For
this reason, securing these vulnerable web applications’ language
runtime a vital and ongoing security concern. In our evaluation, we
usedCPythonversion 3.12.3.When runningCPythonprotectedwith
BinsweepCFI on standard Python benchmarks [1], we observed a
performance overhead of 0.87%. To further demonstrate Binsweep’s
ability to verify real world interpreters, we verified a native exe-
cutable for GraalPy, an implementation of the Python programming
language inGraalVMTruffle [38, 39], a framework for implementing

CCSW ’24, October 14–18, 2024, Salt Lake City, UT, USA Matteo Oldani, William Blair, Lukas Stadler, Zbynĕk S̆lachrt, andMatthias Neugschwandtner

efficient interpreted languages in the GraalVM [41]. For our evalu-
ation, we built GraalPy version 23 using the same GraalVMNative
Image builder as Micronaut. We observed that Binsweepwas able
to efficiently verify the resulting executable, which is hundreds of
megabytes in size, in less than 20 seconds. This quick verification
time enables operators to admit untrusted Python interpreters into
an intra-process sandbox and drastically limit the amount of trusted
code shared between tenants (i.e., the blast radius of a compromised
interpreter is restricted to a single tenant).

6 RelatedWork

Binsweep relates to prior work in twomain categories, control-flow
integrity (CFI) and static binary analysis.

6.1 Control-Flow Integrity

Control-flow integrity (CFI) restricts the paths a programmay exe-
cute to the set knownat compile time [5].Without a loss of generality,
the notion of “compile time” could be extended to code dynamically
executed on the fly, as in a just-in-time (JIT) compiler [23]. CFI is
often implemented by a toolchain that inserts checkswithinmachine
code that control-flow transitions (i.e., indirect jumps and returns)
are performed properly, and can be applied to both user space pro-
grams [32] and kernels [42]. This complicates an adversary’s task
of hijacking control of a program, either by overwriting the stored
instruction pointer on the stack, or hijacking C++ vtables [43] to
trick programs into jumping to attacker controlled pointers.

ThoughsoftwareCFI implementationshave traditionally incurred
high performance overhead, hardware manufacturers have recently
provided CFI primitives within hardware [19]. This allows programs
to verify backward-edge transitions by either checking the integrity
of stored instruction pointers, or relying on a shadow stack to de-
tect corrupted return values. Furthermore, techniques like indirect
branch tracking (IBT) allow the hardware to only perform indirect
jumps to locations with a designated end branch instruction (i.e.,
ENDBR64). Forward edges canalsobeverifiedbyperforming integrity
checks on register values before an indirect jump.While these ap-
proaches have limitations (i.e., all branch targets are grouped within
the same equivalence class), their implementation in hardware im-
plies that CFI can be efficiently enforcedwithminimal changesmade
to the underlying program.

In this work, we adopt the approach taken by IBT by verifying
branch targets in softwarebeforeperforming indirect jumps. Further-
more, care is taken to avoid inadvertently introducingunintendedba-
sic blockswithinourCFI checks (i.e., excluding theENDBR64 constant
fromemittedCFI code). This allowsus to statically confirmuntrusted
programs conform to our CFI technique using a Binsweep policy.

6.2 Static Binary Analysis

Static binary analysis can trace its roots back to decompilation frame-
works that recovered control-flow graphs (CFGs) by recursively
disassembling the contents of executable files[11]. Despite the in-
tractability of the problem in general, binary analysis has flourished
into adiverse ecosystemof tools for reverse engineeringbinaries [25]
in addition an active research topic to address limitations found in
practice, such as maintaining fidelity in decompilation results [13],
and evaluating important metrics to measure decompilation quality

(e.g., difference from an executable’s source code) [8]. These tools
enable performing static analysis passes over CFGs recovered from
binary executables [9, 30], recover source code from the CFG in com-
binationwithmachine learning techniques [24], and deploy security
hardening techniques via binary rewriting [36, 44].

In this work, we restrict the problem of statically analyzing un-
trusted code to executables that conform to a CFI scheme. By con-
firming that CFI patterns are always present for every indirect jump,
we can restrict the behavior of an executable to those instructions
reachable via recursive descent. In contrast to more general purpose
static binary analysis tools, which are designed to support a vari-
ety of analyses over arbitrary executables, Binsweep verifies both
that malicious instructions are not present, and actively checks for
conforming to our CFI technique. Any deviation from the chosen
CFI technique causes Binsweep to reject the binary. Otherwise, Bin-
sweep statically traverses all basic blockswithin the CFGs contained
within the binary, and rejects all instructions forbidden by the cho-
sen security policies. In our evaluation, we found that our approach
of scanning CFGs without explicitly constructing them is able to
outperform angr in recovering CFGs. This result is somewhat ex-
pected: Binsweep is a highly optimized analysis intended to ensure
the security of untrusted code buffers, not a general purpose binary
analysis framework like angr.

7 Conclusion

In this work, we introduced Binsweep, a lightweight static binary
analysis tool for verifying untrusted instruction streams with recur-
sive descent sweeping, described by formal semantics. We described
BinsweepCFI, our software based CFI approach that allows Bin-
sweep to restrict analysis to CFGs reachable from special end branch
instructions. We evaluated Binsweep over SPEC CPU 2017 bench-
marks, along with widely used programs vulnerable to exploitation,
including the popular NGINXweb server, a Micronaut microservice,
and Python interpreters. Our results show that Binsweep can ef-
ficiently verify production executables, hundreds of megabytes in
size, much faster than angr, a state of the art binary analysis tool, and
that BinsweepCFI has manageable performance overhead (6.25% in
the worst case).

References

[1] [n. d.]. Python Interpreter Benchmarks. https://pybenchmarks.com.
[2] 2016. Cyber Grand Challenge (CGC). https://www.darpa.mil/program/cyber-

grand-challenge.
[3] 2024. AI Cyber Challenge (AIxCC). https://www.darpa.mil/program/ai-cyber-

challenge.
[4] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2005. Control-flow

integrity. InACMConference on Computer and Communications Security.
[5] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2009. Control-flow

integrity principles, implementations, and applications. ACM Transactions on
Information and Systems Security (2009).

[6] Dennis Andriesse, Xi Chen, Victor van der Veen, Asia Slowinska, and Herbert
Bos. 2016. An In-Depth Analysis of Disassembly on Full-Scale x86/x64 Binaries.
In USENIX Security Symposium.

[7] Gogul Balakrishnan and Thomas Reps. 2010. WYSINWYX:What You See is Not
What You EXecute. ACM Transactions on Programming Languages and Systems
(2010).

[8] Zion Leonahenahe Basque, Ati Priya Bajaj, Wil Gibbs, Jude O’Kain, Derron
Miao, Tiffany Bao, Adam Doupé, Yan Shoshitaishvili, and Ruoyu Wang. 2024.
Ahoy SAILR! There is No Need to DREAM of C: A Compiler-Aware Structuring
Algorithm for Binary Decompilation. In USENIX Security Symposium.

[9] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J. Schwartz. 2011.
BAP: A Binary Analysis Platform. In International Conference on Computer-Aided

https://pybenchmarks.com
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/ai-cyber-challenge
https://www.darpa.mil/program/ai-cyber-challenge

Binsweep: Reliably Restricting Untrusted Instruction Streams with Static Binary Analysis and Control-Flow Integrity CCSW ’24, October 14–18, 2024, Salt Lake City, UT, USA

Verification.
[10] Nathan Burow, Scott A. Carr, Joseph Nash, Per Larsen, Michael Franz, Stefan

Brunthaler, and Mathias Payer. 2017. Control-Flow Integrity: Precision, Security,
and Performance. Comput. Surveys (2017).

[11] Cristina Cifuentes and K John Gough. 1995. Decompilation of binary programs.
Software: Practice and Experience (1995).

[12] R. Joseph Connor, TylerMcDaniel, JaredM. Smith, andMax Schuchard. 2020. PKU
Pitfalls: Attacks on PKU-based Memory Isolation Systems. In USENIX Security
Symposium.

[13] Luke Dramko, Jeremy Lacomis, Edward J Schwartz, Bogdan Vasilescu, and Claire
Le Goues. 2024. A taxonomy of c decompiler fidelity issues. In USENIX Security
Symposium.

[14] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, andMarc Heuse. 2020. AFL++:
Combining incremental steps of fuzzing research. In USENIX Workshop on
Offensive Technologies.

[15] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John Criswell,
Michael L. Scott, Kai Shen, andMikeMarty. 2019. Hodor: Intra-Process Isolation for
High-Throughput Data Plane Libraries. In USENIX Annual Technical Conference.

[16] Intel. [n. d.]. A Technical Look at Intel’s Control-flow Enforcement Technology.
https://www.intel.com/content/www/us/en/developer/articles/technical/
technical-look-control-flow-enforcement-technology.html.

[17] Swaroop Kotni, Ajay Nayak, Vinod Ganapathy, and Arkaprava Basu. 2021.
Faastlane: Accelerating Function-as-a-Service Workflows. In USENIX Annual
Technical Conference.

[18] Christopher Kruegel, William Robertson, Fredrik Valeur, and Giovanni Vigna.
2004. Static Disassembly of Obfuscated Binaries. In USENIX Security Symposium.

[19] Hans Liljestrand, Thomas Nyman, Kui Wang, Carlos Chinea Perez, Jan-Erik
Ekberg, and N Asokan. 2019. PAC it up: Towards pointer integrity using ARM
pointer authentication. In USENIX Security Symposium.

[20] Arm Ltd. [n. d.]. ARM Permission indirection and permission overlay exten-
sions. https://developer.arm.com/documentation/102376/0200/Permission-
indirection-and-permission-overlay-extensions.

[21] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
building customized program analysis tools with dynamic instrumentation. ACM
SIGPLAN Notices (2005).

[22] Alan Mujumdar. [n. d.]. Armv8.1-M Pointer Authentication and Branch Target
Identification Extension. https://community.arm.com/arm-community-
blogs/b/architectures-and-processors-blog/posts/armv8-1-m-pointer-
authentication-and-branch-target-identification-extension.

[23] Ben Niu and Gang Tan. 2014. RockJIT: Securing just-in-time compilation
using modular control-flow integrity. In ACM Conference on Computer and
Communications Security.

[24] Kuntal Kumar Pal, Ati Priya Bajaj, Pratyay Banerjee, Audrey Dutcher, Mutsumi
Nakamura, Zion Leonahenahe Basque, Himanshu Gupta, Saurabh Arjun Sawant,
Ujjwala Anantheswaran, Yan Shoshitaishvili, et al. 2024. "len or index or count,
anything but v1": Predicting variable names in decompilation output with transfer
learning. In IEEE Symposium on Security and Privacy.

[25] Chengbin Pang, Ruotong Yu, Yaohui Chen, Eric Koskinen, Georgios Portokalidis,
BingMao, and JunXu. 2021. Sok:All youeverwanted toknowaboutx86/x64binary
disassembly but were afraid to ask. In IEEE Symposium on Security and Privacy.

[26] Soyeon Park, Sangho Lee, and Taesoo Kim. 2023. Memory Protection Keys: Facts,
Key Extension Perspectives, and Discussions. IEEE Security and Privacy (2023).

[27] Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon, and Taesoo Kim. 2019.
libmpk: Software abstraction for Intel memory protection keys. InUSENIX Annual
Technical Conference.

[28] David Schrammel, Samuel Weiser, Richard Sadek, and Stefan Mangard. 2022.
Jenny: Securing Syscalls for PKU-based Memory Isolation Systems. In USENIX
Security Symposium.

[29] Vedvyas Shanbhogue, Deepak Gupta, and Ravi Sahita. 2019. Security Analysis
of Processor Instruction Set Architecture for Enforcing Control-Flow Integrity.
In International Workshop on Hardware and Architectural Support for Security and
Privacy.

[30] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,
AndrewDutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
et al. 2016. Sok:(state of) the art of war: Offensive techniques in binary analysis.
In IEEE Symposium on Security and Privacy.

[31] Chilik Tamir. [n. d.]. Dr. Jekyll and Mr. "Hide" – How Covert Malware Made it
into Apple’s App Store. https://www.zimperium.com/blog/dr-jekyll-and-mr-
hide-how-covert-malware-made-it-into-apples-app-store/.

[32] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar
Erlingsson, Luis Lozano, and Geoff Pike. 2014. Enforcing Forward-Edge
Control-Flow integrity in GCC and LLVM. In USENIX Security Symposium.

[33] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael Sammler,
Peter Druschel, and Deepak Garg. 2019. ERIM: Secure, Efficient In-process
Isolation with Protection Keys (MPK). In USENIX Security Symposium.

[34] Tielei Wang, Kangjie Lu, Long Lu, Simon Chung, and Wenke Lee. 2013. Jekyll
on iOS: When Benign Apps Become Evil. In USENIX Security Symposium.

[35] Martin Weidmann. [n. d.]. Arm A-Profile Architecture Developments 2022.
https://community.arm.com/arm-community-blogs/b/architectures-and-
processors-blog/posts/arm-a-profile-architecture-2022.

[36] David Williams-King, Hidenori Kobayashi, Kent Williams-King, Graham
Patterson, Frank Spano, Yu Jian Wu, Junfeng Yang, and Vasileios P Kemerlis.
2020. Egalito: Layout-agnostic binary recompilation. In ACM Conference on
Architectural Support for Progamming Languages and Operating Systems.

[37] ChristianWimmer, Codrut Stancu, Peter Hofer, Vojin Jovanovic, PaulWögerer,
Peter BKessler, Oleg Pliss, and ThomasWürthinger. 2019. Initialize once, start fast:
application initialization at build time. ACM SIGPLAN International Conference on
Systems, Programming, Languages and Applications: Software for Humanity (2019).

[38] ChristianWimmer and ThomasWürthinger. 2012. Truffle: a self-optimizing run-
time system. In ACM SIGPLAN International Conference on Systems, Programming,
Languages and Applications: Software for Humanity.

[39] ThomasWürthinger, ChristianWimmer, Christian Humer, AndreasWöß, Lukas
Stadler, Chris Seaton, Gilles Duboscq, Doug Simon, andMatthias Grimmer. 2017.
Practical partial evaluation for high-performance dynamic language runtimes. In
ACM-SIGPLANSymposiumonProgrammingLanguageDesign and Implementation.

[40] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles
Duboscq, Christian Humer, Gregor Richards, Doug Simon, andMarioWolczko.
2013. One VM to rule them all. In ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming & Software.

[41] ThomasWürthinger, AndreasWöß, Lukas Stadler, Gilles Duboscq, Doug Simon,
and Christian Wimmer. 2012. Self-optimizing AST interpreters. In Symposium
on Dynamic Languages.

[42] Sungbae Yoo, Jinbum Park, Seolheui Kim, Yeji Kim, and Taesoo Kim. 2022.
In-KernelControl-Flow integrity on commodity OSes using ARM pointer
authentication. In USENIX Security Symposium.

[43] Chao Zhang, Dawn Song, Scott A Carr, Mathias Payer, Tongxin Li, Yu Ding, and
Chengyu Song. 2016. VTrust: Regaining Trust on Virtual Calls.. In ISOC Network
and Distributed System Security Symposium.

[44] Haotian Zhang, Mengfei Ren, Yu Lei, and Jiang Ming. 2022. One size does not
fit all: security hardening of mips embedded systems via static binary debloating
for shared libraries. InACMConference on Architectural Support for Progamming
Languages and Operating Systems.

https://www.intel.com/content/www/us/en/developer/articles/technical/technical-look-control-flow-enforcement-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/technical-look-control-flow-enforcement-technology.html
https://developer.arm.com/documentation/102376/0200/Permission-indirection-and-permission-overlay-extensions
https://developer.arm.com/documentation/102376/0200/Permission-indirection-and-permission-overlay-extensions
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/armv8-1-m-pointer-authentication-and-branch-target-identification-extension
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/armv8-1-m-pointer-authentication-and-branch-target-identification-extension
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/armv8-1-m-pointer-authentication-and-branch-target-identification-extension
https://www.zimperium.com/blog/dr-jekyll-and-mr-hide-how-covert-malware-made-it-into-apples-app-store/
https://www.zimperium.com/blog/dr-jekyll-and-mr-hide-how-covert-malware-made-it-into-apples-app-store/
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/arm-a-profile-architecture-2022
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/arm-a-profile-architecture-2022

	Abstract
	1 Introduction
	2 Background and Threat Model
	2.1 Control-Flow Integrity
	2.2 Binary Analysis
	2.3 Threat Model

	3 System Overview
	3.1 Recursive Descent Sweeping
	3.2 Software Control-Flow Integrity
	3.3 Binsweep CFI Policy

	4 Implementation
	4.1 Disassembly
	4.2 Software Control-Flow Integrity with LLVM
	4.3 Binsweep CFI Policy
	4.4 Hardening Policies for x86

	5 Evaluation
	5.1 Experimental Setup
	5.2 Attack Case Studies
	5.3 Performance Case Studies

	6 Related Work
	6.1 Control-Flow Integrity
	6.2 Static Binary Analysis

	7 Conclusion
	References

